Sliding Substitution of Failed Nodes

Atsushi Hori
RIKEN AICS
ahori@riken.jp

Aurélien Bouteiller
The University of Tennessee
Innovative Computing Lab.

bouteill@icl.utk.edu

ABSTRACT

This paper considers the questions of how spare nodes should
be allocated, how to substitute them for faulty nodes, and
how much the communication performance is affected by
such a substitution. The third question stems from the mod-
ification of the rank mapping by node substitutions, which
can incur additional message collisions. In a stencil compu-
tation, rank mapping is done in a straightforward way on
a Cartesian network without incurring any message colli-
sions. However, once a substitution has occurred, the node-
rank mapping may be destroyed. Therefore, these questions
must be answered in a way that minimizes the degradation
of communication performance.

In this paper, several spare-node allocation and node-
substitution methods will be proposed, analyzed, and com-
pared in terms of communication performance following the
substitution. It will be shown that when a failure occurs,
the peer-to-peer (P2P) communication performance on the
K computer can be slowed by a factor of three and collec-
tive performance can be cut in half. On BG/Q, P2P per-
formance can be slowed by a factor of five and collective
performance can be slowed by a factor of ten. However,
those numbers can be reduced by using an appropriate sub-
stitution method.

CCS Concepts

eNetworks — Network experimentation; eComputer
systems organization — Redundancy;

Keywords

fault tolerance, fault mitigation, spare node, communication
performance

1. INTRODUCTION

With the fault rate increasing on high-end supercomput-
ers, the topic of fault tolerance has been gathering atten-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

EuroMPI 15, September 21 - 23, 2015, Bordeaux , France

(© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3795-3/15/09. .. $15.00

DOL: http://dx.doi.org/10.1145,/2802658.2802670

Kazumi Yoshinaga
RIKENAICS
kazumi.yoshinaga@riken.jp Innovative Computing Lab.

George Bosilca
The University of Tennessee
Innovative Computing Lab.

bosilca@icl.utk.edu

Thomas Herault
The University of Tennessee

herault@icl.utk.edu

Yutaka Ishikawa
RIKENAICS =~
yutaka.ishikawa@riken.jp

tion[3], and jobs are being aborted due to system errors[7].
To cope with this situation, various fault tolerance tech-
niques have been investigated. Checkpoint and restart is
a well-known technique for parallel jobs, and enabling jobs
to continue execution from a previously defined checkpoint
(there are many studies of checkpoint and restart, but the
most notable one is [4]).

With the increase in size of parallel applications, the amount
of I/O needed for checkpoint/restart begun to be problem-
atic. A lot of research is currently going on on techniques
to reduce the checkpoint amount in order to alleviate the
I/0O issue. One of the possible approaches is [14]. On the
other hand, user-level checkpoints, where each program im-
plements its own checkpoint/restart strategy, have been at-
tracting attention as a possible alternative. Since the user
knows which data should be saved and which data can be
lost, the amount of checkpoint data can be drastically re-
duced, and thus the I/O time can also be greatly reduced,
at the cost of only some additional programing by the user.

Davies et al. presented a method that allows a user pro-
gram to be fault-tolerant without using checkpointing[5].
In this technique, the parity to recover the lost data can
be embedded into an LU decomposition algorithm, and the
user program can recover from failure without checkpoint-
ing. Having the opportunity to address the failure at the
algorithm level opens interesting perspective and new re-
search topics. With support from the programing paradigm
and the execution environment, users could write applica-
tion handling faults in the most optimal way. The Message
Passing Interface (MPI) is the most widely used commu-
nication library, and its specifications are well defined[12].
Unfortunately, in the current MPI standard, a fatal error
handler is raised upon process failure, preventing any user-
level fault handling to be implemented at this time.

To define the behavior of MPI when a fault occurs, User-
level Failure Mitigation (ULFM) has been proposed and a
prototype is being developed, capable of handling both pro-
cess and node failures[2]. ULFM provides the application
program interface (API) so that the modifications to the ex-
isting MPI specifications are minimized. Even with ULFM,
user-level fault handling is not straightforward, and vari-
ous frameworks have been proposed to simplify it. Falanx
is a fault-tolerant framework for master-worker program-
ing[19]. Local Failure Local Recovery (LFLR) is another
fault-tolerant framework[20], and it covers a wider range of
programing models than are supported by Falanx. Both

Falanx and LFLR are implemented by using ULFM. Global
View Resilience (GVR) is another user-level fault mitiga-
tion system; it is based on partitioned global address space
(PGAS) programing]9, 22].

We believe that the user-level fault-handling code must be
as simple as possible. It is important to avoid situations in
which the code for handling the first node failure is different
from the code for handling subsequent failures, because it
is very hard to produce this type of situation when testing
a program. This type of complexity must be hidden within
the system software.

o|1]2|3lals ol1|208]4]ls ol1lalals
6|7]8|9l0]n 6|7 |8 a0 ol 71 s [0
1213|1415 [16| 17 12|13] 14 [48] 16 | 17

12 13 14 16 17
18| 19 | 20q 21 fe2 | 23 18| 19 2022 23
24| 25|26 | ¥] 28] 20 24| 25| 26 |27 28 | 20 N I
30|31 3233|3435 30|31 32|83 34|35 30| 31|32 34|35

Node 21 down Physical View Logical View

(Excluding column and row)

Figure 1: Example of node failure and recovery

Figure 1 shows an example of a node failure in a 2D net-
work consisting of 36 nodes. Here, it is assumed that a job
is running on this machine, and the job is written with a
fail-stop-free runtime system, such as ULFM. When node
21 goes down (left panel in Figure 1), the job running on
those 36 nodes can take one of the following actions:

e Abort the job and resubmit it (from a previous check-
point, if possible), or

e Allow the remaining 35 nodes to continue to execute
the job.

In the first strategy, user-level fault handling is not re-
quired. In the second strategy, the task allocated to the
failed node must be equally shared by the remaining 35
nodes, otherwise, a load imbalance occurs. If the job can bal-
ance a dynamic load, which is a capability of master-worker
models and particle-in-cell simulations, then the load can
be rebalanced by the application itself, without the need to
extensively modify the code. However, if the job is a stencil
application, which, in most cases, does not have dynamic
load balancing capability, then fault handling is more diffi-
cult. In most stencil applications, both the communication
pattern and the load balancing are static. To preserve the
communication pattern, one possibility for handling a node
failure is to exclude the row and column that include the
failed node (middle panel in Figure 1); this preserves the
stencil communication pattern. However, the task allocated
to the failed node must be shared equally by the remain-
ing nodes (right panel in Figure 1). This load-leveling re-
quires additional code for handling the fault, and this must
be avoided if possible.

If a system software reserves a set of spare nodes in ad-
vance, and the failed node is replaced by a spare node, then
the user-level handling of node failure is simplified, because
the number of nodes involved in the computation remain the
same. LFLR assumes the use of spare nodes, and although
the detailed recovery process is hidden from users, GVR may
utilize spare nodes. However, to the best of our knowledge,

there has been no discussion of the best way to reserve spare
nodes or of how to use them to replace failed nodes. As an
evaluation index, we chose communication performance, be-
cause the use of spare nodes may introduce extra message
collisions.

This paper presents the results of our investigations into
these issues. We propose several methods for using spare
nodes to replace faulty ones. The proposed methods are dis-
cussed and compared from the viewpoint of communication
performance degradation. The primary contribution of this
paper is a comparison of methods for allocating spare nodes
and for substituting them for faulty nodes, while focusing
on the degradation of communication performance.

2. USING SPARE NODES

For the remainder of this paper, we will assume that the
networks being considered have a multidimensional Carte-
sian (mesh and/or torus) topology. We make this assump-
tion because four of the top five machines have networks
with this topology (as listed on the TOP500 Super Com-
puter Site[17], November 2014); see Table 1.

Table 1: Network topologies in the Top500 list[17]

Top500

rank Name # Cores | Topology
1 Tianhe-2 3,120K | FatTree
2 Titan (Cray XKT7) 561K | 3D Torus
3 Sequoia (BG/Q) 1,571K | 5D Torus/Mesh
4 The K computer 705K | 6D Torus/Mesh
5 Mira (BG/Q) 786K | 5D Torus/Mesh
8 JUQUEEN (BG/Q) 459K | 5D Torus/Mesh

From the programmers point of view, it is not complicated
to have spare nodes held ready, or to have them substituted
in for faulty nodes. With MPI, the modification is as follows:
1) a new MPI communicator is created at the location from
which the faulty node is extracted (in ULFM, the command
MPI_Comm_shrink will do this), and a selected spare node
replaces the faulty node; 2) the spare node is set up to take
over the functions of the failed node. The remaining parts of
the program can remain as they were. This means that the
logical topology provided by the new MPI communicator can
remain the same as it was before the failure; however, the
actual physical topology is altered. New message collisions
that would not have happened under the failure free physical
topology will happen under the recovered topology (Figure
4).

Therefore, replacing faulty nodes with spare nodes must
be done carefully in order to minimize the communication
performance degradation. There are many other aspects
that should be considered, such as system utilization, job
turn-around time, ease of user programing, and the frame-
work that needs to be developed. Unfortunately, almost no
research has been done on this topic, so in this paper, we
will focus primarily on the communication performance.

Throughout this paper, we will be concerned only with the
node failure. Network failures can also occur, but we will
assume that this recovery is the responsibility of the network
itself[8] (see also Section 4). The Tofu network, which is used
by the K computer, uses redundant links to detour around
failed nodes[18]. We will assume that a job can survive even
with the failure of one or more nodes when it is operating

in a parallel computing environment that provides a user-
level fault mitigation mechanism, such as ULFM, and any
processes running on the failed node can be recovered from a
checkpoint or by using parity with viable processes. Finally,
we will assume that the processes running on a node can be
migrated to any other node.

In the next subsection, we will discuss the allocation of
spare nodes, and the possibility of this degrading the com-
munication performance will be shown. Then, three meth-
ods for substituting a spare node for a faulty node will be
proposed and compared.

2.1 Spare Node Allocation

For simplicity, we will consider only 2D networks. In
higher-dimensional networks, that is, with a higher order
of XY routing[21], if messages are routed in the dimension
order, then they are eventually routed to a plane consist-
ing of the last two dimensions. Thus, a discussion of a 2D
network is meaningful.

Figure 2 shows three different ways of allocating spare
nodes. Each small square represents a node. In the left
panel, the right-hand column is reserved for spare nodes;
this pattern is denoted as 2D(1,1). In the middle panel,
two sides (the right-hand column and the bottom row) are
reserved for spare nodes, denoted 2D(2,1). In the right-hand
panel, two two-node thick sides (the two right-hand columns
and two bottom rows) are reserved, denoted 2D(2,2). In this
notation, “2D” means that the allocation applies to the 2D
plane, the first number in the brackets is the number of sides
in which spare nodes are reserved, and the second number is
the thickness, number of columns or rows, of a side of spare
nodes reserved.

o1 213|415
o1 213|415 6|7 (8]9]|10]|1
g
0|1 |2|3|4]|65 6|7 |89 (10|11 12|13 14 | 15| 16 | 17 2
1] S
6|7 |89 [10[11] 4 1213|1415 | 16| 17 % 1811920 |21 |22|23 f}
4] 8 o_|
o =4 ©
12|13 | 14| 15| 16 [17 ZD 1819 120| 21|22 |23) 24 125|126 |27 |28 |29 ‘%7
©
1819 20| 21|22 |23 g 24| 25|26 |27 | 28|29 r% 30(31]32(33|34|35
<
24|25 |26 27|28 |29 30|31 (32(33|34|35
Spare Nodes
30(31|32(33|34|35 Spare Nodes ‘ ‘ ‘
2D(1,1) 2D(2,1) 2D(2,2)

Figure 2: Patterns for allocation of spare nodes

Spare nodes are allocated at the side(s) of a 2D grid, as
shown in Figure 2; thus, a stencil application with non-
periodic boundaries will not have any overhead. This will
not be the case for stencil applications that have periodic
boundaries or for networks that have torus topology. How-
ever, the hop count is only increased by one, so the increase
in run time will be very small (100 ns per hop on the K
computer).

The percentage of the nodes that are reserved as spare
nodes in the 2D(2,2) case is as follows.

Ropay =1— (N2 —2)?/N

Where N is the number nodes. In the more general ¢D(r, s)
case, the percentage of spare nodes can be expressed as fol-
lows.

(Nl/q —)" x (Nl/q)qfr
Rop(rs) =1- N

Here, r < q and s < N%. Note that this expression is not
precise, because the number of nodes is an integer, and the
flooring effect is ignored. However, this information can be
useful for determining how the spare node percentage relates
to the total number of nodes used for a job.

Figure 3 shows the percentages of spare nodes for various
numbers of nodes and patterns of allocation. As shown in
this figure, the more dimensions the network has, the higher
the percentage of spare nodes. The percentage is almost
proportional to the number of sides allocated to the spare
nodes. Most notably, the larger the job size, the lower the
percentage. We will discuss this point in Section 5.1.

— 3D
12\

31)

— 3D21)

10 \ 3D(1,1)
(2,1)

(1,1)

2D
2D

% Spare Nodes

2

18,000 100,000
Nodes

7,000,000
Figure 3: Percentage of spare nodes

It is possible to allocate spare nodes on four sides of a
2D grid, but on a torus network, this is almost equal to the
2D(2,2) case. In our investigation, we could not find any
significant difference between 2D(4,1) and 2D(2,2), and so
in this discussion, we will not further consider cases in which
r > q. The thickness, s, does not affect the nature of the
spare node substitution method described in Section 2.2, so
we will investigate only cases of single-node thickness.

Having spare nodes can decrease the system utilization
ratio. However, this does not always happen. On the K
computer, the size of each dimension of a job must be in a
Tofu unit, which has twelve nodes. When a user submits an
11x11x11 3D job, for example, it may be scheduled to have
12x12x12 nodes. This results in 3D(3,1) spare nodes. The
same situation can be seen with the other machines that
have a Cartesian topology network and are listed in Table
1. On Blue Gene/Q (BG/Q) machines, the number of nodes
for a job must be a power of 2[11]. On a Cray XK/7, jobs
are allocated to 4 blocks[13]. Thus, the gap between the
number of nodes required by a job and the number of nodes
actually allocated can be allocated as spare nodes, without
requiring additional nodes.

2.2 Substitution of a Spare Node for a Faulty
Node

Communication performance degradation can be observed
because when a spare node that replaces a faulty node can
be located far from the original node. Figure 4 shows the
5P-stencil communication pattern (left). In 5P-stencil com-
munication on a Cartesian topology, no messages collide, be-
cause nodes communicate only with their neighbors. Here,
XY routing is assumed. In the right-hand panel of Figure 4,
when a faulty node (denoted as “F”) is replaced by a spare
node (denoted as “S”), the regularity of the stencil commu-
nication pattern is lost. As shown in this figure, there are

five message routes crossing through the circled link, this
means that up to five messages can collide.

I I I
Spare Nodes S 4
s t.__> T<__>r<__>t<__>
—>l —>J —>l —>l > T
1 1 1 1 L1 |
1 1 1 1
1 1 1 1
1 i 1 i
Normal After substitution

Figure 4: Message collisions

We propose three methods for substituting nodes, and
these are shown in Figure 5. We call these methods the
0D, 1D, and 2D sliding methods. With higher-dimension
networks, those proposed methods can be augmented in a
natural way, but for simplicity, we will explain them on a
2D network. We will use a 5P-stencil communication pat-
tern, in which messages from each node are sent up, down,
left, and right. In the 9P-stencil communication pattern,
there are an extra four directions, since messages can be
sent along the diagonals. However, in most cases, the length
of those diagonal messages is much shorter than those in a
5P-stencil pattern, and so the effect on the communication
performance is expected to be small.

2.2.1 0D sliding

The 0D sliding method is the simplest. The faulty node
is simply replaced by a spare node (as was shown in Fig-
ure 5). There is a big drawback to this method, however,
when a node failure happens far from a spare node: the hop
distance from the failed node to the spare node can be very
large. This increases the possibility of message collisions and
results in a higher communication latency due to the large
number of hops. To minimize this, the failed node should
be replaced with the spare node to which the Manhattan

distance is the shortest.
Figure 6 shows examples of the results of replacing multi-

ple faulty nodes when using the 0D sliding method with
the 2D(1,1) allocation. On the left-hand panel, nodes 1
through 5 have failed and have been replaced by spare nodes
1’ through 5’, respectively. The spare nodes were chosen so
as to minimize the number of hop counts between each faulty
node and its corresponding spare node. With non-periodic
5P-stencil communication in the XY routing algorithm, the
messages from all of the spare nodes to the nodes (A through
F) adjacent to the failed nodes are routed through node 1’
(because of the X direction routing of the XY routing algo-
rithm). Thus, there are eleven messages in the network links
between 1’ and A (these are shown in the white boxes): these
ten plus the normal stencil communication message between
the nodes. This is the worst-case scenario for the 0D sliding
method, and the number of faulty nodes is less than or equal

to six.
The right-hand panel of Figure 6 shows a case for which

the network topology is a 2D mesh, spare nodes are reserved
in the 2D(1,1) pattern, and the faults happen within a row
or column that is close to the side of the network. Failed
node 1 is replaced by spare node 1°, and so on. In this case,

617 (8|9]|10|11
12(13|14|15|16 |17

181920 .22 ress21

24|25|26(27 |28 |29

0D Sliding

Node 21 fails
0|1]2|3|4]|5 0|1]2|3|4]|5
6|7|8]|9]|10]11 6|7|8]|9]|10]11
12|13 | 14816 |17 12[13[14[15|16 |17
1819 21 [0 |23
24|25 | 26| ¥7 128 | 20 24|25|26 21| 28|29
30(31|32|33|34 |35 30|31(32|27(3435

Spare Nodes
1D Sliding

Spare Nodes 33

6|7 (891011
12(13|14|15|16 |17

2D Sliding

18(19(20|21 |22 23
24|25|26 |27 |28 |29
30(31(32(33(34 |35

Figure 5: Substitution methods for faulty nodes

the failures happen close to the side of the network, and it
is not possible to replace the spare nodes as in the left-hand
panel of Figure 6. In non-periodic 5P-stencil communica-
tion, all messages from spare nodes 4’, 5°, 6’, and 7’ to the
neighbor nodes A to V go through the link between 3’ and
4’. There are sixteen messages, since each node sends four
messages, one to each of its neighbor nodes. This situa-
tion can happen when the number of faults is greater than
or equal to seven. Below, we state the relation between the
maximum number of possible message collisions (Chnaz) and
the number of node failures (F,). Note that when Craz is
equal to one, then there is only one message on each network
link, and there are no collisions.

c _J 2xF,+1 F,, <6 or torus topology
e 4 x (Fy —3) F, > 7 and mesh topology

This worst-case scenario can be relaxed by having spare
nodes allocated in the 2D(2,1) pattern. If the failures hap-
pen in the same row or column, then the spare nodes must
be chosen from alternating sides. See Section 2.3.

2.2.2 1D sliding

As described in the previous subsection, in the 0D sliding
method, even if the closest spare node is chosen, the distance
from the failed node is unlikely to be small. The 1D sliding
method can avoid this situation, and it is shown in Figure
7. When node 21 fails, instead of replacing it with a spare
node, the nodes of the column (or row) that include the
failed node shift toward a spare node, as shown in the upper
left-hand panel of the figure. In this way, the hop count in
the 5D-stencil communication pattern is increased by only
one. This is much smaller than occurs with the 0D sliding
method.

A worst case
in OD sliding
#Faults =7

A worst case
in OD sliding
#Faults <6

Figure 6: Worst-case scenarios for 0D sliding

In terms of hop counts, the 1D sliding method is superior
to the 0D sliding method; however, the recoverable number
of faulty nodes is limited in some cases. Let us consider
a case in which a second node (16) fails (again using the
2D(2,1) pattern); this is shown in Figure 7. This time, and
the sliding direction is along the column. If a third node
(15) fails, then there is no space left for the 1D sliding (top
row of Figure 7). This situation can be avoided by sliding
along the column direction after the second failure (middle
row of Figure 7).

The number of nodes below which a third failure cannot
be handled by the 1D sliding method is the product of the
number of slidings in each direction. Thus, it is not a good
idea to evenly distribute the sliding directions; instead, they
should be as uneven as possible. Even when this is done,
however, the 1D sliding method may be limited to three
failures (bottom row in Figure 7).

The relation between the maximum number of message
collisions and the number of failed nodes with the 2D(2,1)
spare node allocation pattern can be expressed as shown
below. Note that there may be cases in which this method
cannot handle more than three node failures.

C’maz:2+Fn

2.2.3 1D+ sliding

The 1D sliding method can be modified so that it can
handle four or more failures. The left-hand panel of Figure
8 is the same as the bottom right-hand panel of Figure 7.
When the fourth node (15) fails, nodes 9, 10, and 11 are
slid to the right to make room above node 15, and node 15
is moved one space upward (right-hand panel of Figure 8).
This method is called the 1D+ sliding method.

2.2.4 2D sliding, 3D sliding, ..., ¢D sliding

In the 2D sliding method, the rows and columns of the
node space are shifted by one unit to empty the row or
column of the failed node (bottom panel of Figure 5). This
2D sliding method can handle only one node failure with
the 2D(1,1) pattern or two node failures with the 2D(2,1)

o[1]2]a]4]s o[1]2]s]4]s Rl 3[4]s
6|7]8]9]0]1 6|78 olsm]i0 b Kediaso] 10
12| 13] 14 38136 [17 12| 1314 17 1213 16]17]
18] 19 2| |—=>]1s]19]0 ofos] | = |18]19]20 2[23
24] 25| 26| %1]28 | 29 24 25|26 21] 28] 20 24| 25| 26| 21] 28] 29
30| 31|32 |27]34]3s 30]a1]a2|27|34]35 30|at1]s2|27|34]3s
33 33 33
o[1]2]s]4]s o[1]2]s]4]s
6|7 |89\ 11 6178 10|11
12]13]14 | 1213 15]17
18] 1920 blos| | = [18]19]20 6[23
2425 |26 21| 22] 29 24| 25| 26|21 22 29
30]a1]a2| 272835 30|a1]s2|27|28]3s
33|34 33]34
o[1]2]a]4]s o[1]2]s]4]s NNS2EHE
6|7]8]9]0]n IR BN \eilaLyo] 1
12 13]14]1 17 12|13 14 17 1213 16]17
18] 19] 20 | | = [18]19]20 5] |—=|18]19]20 23
24]25| 26|21 Yoo | | [22]25]26]21]22|20| | [2425]26[21]22]20| |
30]31]32|27]28]35 30]a1]a2]27|283s 30]a1]s2 272835
33]34 33|34 33|34

0O|1]2|3|4]|5 0[1]2[3[|4]|5
67|89 |10(11 67 |8|15]9 10|11
1211314 1617 1213 |14 16|17
181920 23 —> |18]19|20 23
2425|2621 |22|29 24125(26|21|22|29
30|31|32|27]28|35 3031|3227 |28]35
33|34 33|34

Figure 8: 1D+ sliding

pattern. If the network has a higher-dimensional Cartesian
topology, then the 3D or higher-order sliding can take place
in the same way.

With XY routing, the messages pass orthogonally through
the vacant rows or columns. All message routes are the same
as they were before the failure. Thus, unlike the 0D and
1D sliding methods, although the hop counts are increased
by one, message congestion can be avoided. Further, this
behavior is independent of the communication pattern of
the application.

2.3 Comparison of Proposed Methods

Figure 9 shows histograms of the cases having the largest
message collisions in any possible combinations of a failed
node and a spare node. The 5P-stencil communication pat-
tern, no periodic boundaries, was simulated. The 0D (left
graph) and 1D sliding (right graph) methods are compared
with the following node allocation patterns: 10x10, 20x20,
40x40, 80x80, and 160x160 (mesh topology). The Y axes
shows the normalized frequency of the combinations of failed

node and spare node.
As can easily be seen, the larger the number of nodes,

the higher the frequency of high message collisions. This is
because fewer message collisions happen when a failed node
is 1) close to the spare nodes; 2) on the side of the node
grid; or 3) on the boundary of the 5P-stencil. Thus, when
the network topology is a torus and/or the 5P-stencil com-
putation has periodic boundaries, then the worst case will
occur more frequently. When the number of nodes is very

Frequency
Frequency

0 10x10 20x20 40x40 80x80 160x160 10x10 20x20 40x40 80x80 160x160

Nodes - 0D Sliding # Nodes - 1D Sliding

Figure 9: Histogram for number of collisions (5P-
stencil, one node failure, simulated)

large, the worst-case scenario for message collisions happens
in most cases.

Figure 10 shows the number of possible message collisions
versus the number of failed nodes for the 0D sliding method
with the 2D(1,1) and 2D(2,1) spare node allocation patterns,
1D sliding with the 2D(2,1) pattern, and 2D sliding with the
2d(2,1) pattern.

35 — 5 —
» 30 0D Sliding 2D(1,1) | 30 0D Sliding 2D(2,1)
c
S 'S
O 15 3 15
%10 o8l 10
=5 5
0 = 0 =
12345678910 12345678910

10 I 10
1D Sliding 2D(2,1)

2D Sliding 2D(2,1)

Max. Collisions
o NRO} o]
I

1 2 3 4 5 1 2 3 4 5
Failures # Failures

Figure 10: Comparison of 0D, 1D, and 2D sliding
(5P-stencil, worst cases)

As already described in Section 2.2.1, the number of pos-
sible message collisions with 0D sliding with the 2D(1,1) al-
location pattern for a given number of failed nodes depends
on the network topology (mesh or torus) when the number
of faults is greater than six (upper left-hand panel in the
figure). With 2D(2,1) case, up to 5 failures are simulated.
It is possible to handle more number of failures with the 0D
sliding method, however, the exponential growth of failure
combinations was the obstacle for us to simulate more.

The 1D sliding method with the 2D(2,1) spare node al-
location pattern can handle up to three failures perfectly.
More number of failures can be handled when the failures
happen at some specific locations. This is shown as a dashed
line in Figure 10.

The 1D sliding method can handle no more than the num-
ber of spare nodes minus one, since the spare node at the

corner of the 2D(2,1) allocation cannot be used. The 2D
sliding with 2D(2,1) can handle only two failures.

Hybrid method

The substitution methods described so far are independent
and can be applied simultaneously. Figure 11 shows an ex-
ample of a hybrid method. The first and second failures
are handled by using the 2D sliding method (left-hand and
middle panels), and the third failure is handled by using the
1D sliding method (right-hand panel). In this way, message
collisions can be avoided even with two failures, and the job
can survive even with a greater number of failures.

0(1]2[8]4]5 01 | 2345 o1 2
6718|9101 67 8|9 (1011 6|7 8|9 il
12] 13 [140 1A 16|17 £ 15 (16|17 12113 14|15[10|17
> > 16
181920 223 18119 20(21|22|23 18|19 20|21|22|23
2425|2627 (28|29 24|25 26|27 28|29 24|25 26|27|28|29
30(31|32(33|3435 30 (31 32(33|34 35 3031 32(33|34 (35

Figure 11: Example of hybrid sliding

If stencil program users are willing to have the load redis-
tribution shown in Figure 1, then the nodes left vacant by
the handling of the first node failure can be used as spare
nodes, and the 0D, 1D, 1D+, and 2D sliding methods can
be applied to subsequent failures. With cost to the user
for extra programing effort to adjust the load distribution,
the node utilization problem described in Section 2.1 can be
avoided.

As shown in Figure 11, the node-rank mapping will be lost
as the number of failed nodes increases. Thus far, we have
considered the number of possible message collisions for each
method separately, but we have not considered the number
of collisions when they are mixed; thus, we should consider
the possibility of one or more hot spots for collisions in the
network. To avoid this situation, when the disorder reaches
a given level, the nodes should be reordered so that any hot
spots will be removed. Unfortunately, we have not yet been
successful in developing such an algorithm.

3. EVALUATION

The proposed sliding methods have been explained and
discussed by using a 2D Cartesian network, however, the
actual physical network can be more complex, having 5 or
more number of dimensions, as shown in Table 1. Even if
users require their jobs to run in 2D node spaces, those 2D
node spaces are folded to fit in the actual network topolo-
gies. On the K computer, any 2D Cartesian node planes
are mapped to the 6D Tofu network so that the neighbor
relationship of the 2D or 3D Cartesian topology can be pre-
served. On the BG/Q system, the node-rank mapping is the
user’s responsibility. To preserve the neighbor relationship
of the 2D or 3D Cartesian topology, “snake-like pattern” is
recommended[10]. Anyhow, the mapping or folding of users’
topologies to fit into a physical network topologies may affect
the communication performance in different ways discussed
so far.

Also in this paper, we have focused our analytical effort on
the maximum number of message collisions, which has the
implicit assumption that all messages are sent from nodes

simultaneously, thereby always resulting in collisions if their
path follows the same link. However, the number of message
that can be sent simultaneously is dependent on network
hardware features (like the number of DMAs). When the
maximum number of simultaneous sends is one, for example,
the number of collisions is reduced.

In this section, the sliding methods described so far are
evaluated by using the actual supercomputers: the K com-
puter and JUQUEEN][16], a BG/Q machine listed in Table
1. The snake-like pattern appropriate for BG/Q computers
is employed on JUQUEEN. This experimental campaign will
characterize the difference between the theoretical analysis
and observed practical consequences.

3.1 5P-Stencil Communication

In the 2 failure cases in this subsection, all possible com-
binations of 2 node failures are simulated. Communication
performance degradation is measured with an in-house 5P
stencil communication benchmark.

In most figures in this section, the worst times are shown
by the upper horizontal bars, the best times are at shown
by the lower horizontal bars, and the average values are
shown by the middle horizontal bars. The Y-axes are the
relative times, compared to the cases without having any
failed nodes (thus, bigger is worse).

Figure 12 shows the relative communication performance
of 5P-stencil communication on the K computer. The num-
ber of nodes allocated for the job is 24 x 24 (576) and spare
nodes are allocated in the 2D(2,1) way. In the 1D+ sliding
method, only the 2 failure cases are shown because its sub-
stitution is the same as the one of the 1D sliding method
with having only one failure. The substitutions of 2 failed
nodes in the 1D+ sliding method are also the same with the
1D sliding method when the spare nodes are allocated in
the 2D(2,1). So the 1D+ sliding method was evaluated as if
it is allocated 24 x 23 nodes withe the 2D(1,1) spare node
allocation. Message size varies between 256KiB to 4Mib.

In the 1D+ sliding method, in most cases the substitution
after 2 faults are similar to the 1D sliding method. We out-
line the difference between the 1D and 1D+ sliding methods
by presenting separately the cases where those methods ac-
tually result in a different rank-node mapping (in the graph
noted 1D+ only).

oD 1D 1D+ 2D
1F 2F 1F 2F 2F 2F 1F 2F

1D+ only

N

o

n

‘
w

*]
Relative Latency

[—
——H
——H
=
—
—
—
—t—
——
—
—
R
—

.‘

H

H
H—t
.+‘

.'_.

.
—

Relative Latency
N

=]
S)

Qoo Daom Qoo 2o@ Oo@n o@o@ Qoo Daom
== ¥$=3 5> ¥X=3= == X=3 =SS ¥$=3
gv—ﬁ' gv—<r gv—v gv—ﬁ' gv—<r gv—v gv—ﬁ' gv—<r
[Y [[« Y Y Y

Figure 12: 5P Stencil - the K computer

So far, it has been assumed that the message sending in
a stencil communication happens simultaneously. However,
jitter[1] affects this assumption. Assume that two messages,
A and B having the same length, arrive at the same network
link at the same time, and the message A can go through
before the message B. The message B must wait until the

whole message A goes through the link. This results in that
the message B will have twice the latency.

Similarly, when the message B arrives at a link junction in
the middle of the message A going through the link, the la-
tency of the message B is 1.5 times larger compared with the
case without collision. Thus, when jitter is large or message
sizeis small, the actual average latency affected by message
collisions get smaller.

In the 0D sliding cases shown by this graph, the worst
latencies here is almost three times worse than the latency
when there are no faulty nodes. As discussed above, there
are at most five messages colliding. However, the Tofu net-
work of the K computer allows us to send four messages
in different directions at the same time[15], but this takes
from 1.64 (256MiB message) to 1.75 (4MiB message) times
longer than it does to send a single message. Thus, a lag of
5/1.7 = 3 is observed. On BG/Q, contrastingly, the 4-way
simultaneous message sending takes from 1.12 (256KiB mes-
sage) to 1.03 (1MiB and 4MiB message) times larger than
the time for sending only one message.

oD 1D 1D+ 2D
1F 2F 1F 2F 2F 2F 1F 2F

T+ 1D+ only

o

n

= o o

N
'

i
'l

i
™

—
T

Relative Latency

o)

1

T

1

T

1

T

1

T

\ —_

N W

Relative Latency

—

o =N
(<)

256KiB
1MiB
4MiB
256KiB
1MiB
4MiB
256KiB
1MiB
4MiB
256KiB
1MiB
4MiB
256KiB
1MiB
4MiB
256KiB
1MiB
4MiB
256KiB
1MiB
4MiB
256KiB
1MiB
4MiB

Figure 13: 5P Stencil - BG/Q

Figure 13 shows the BG/Q results of the same evaluations
as in the above K computer cases, except that the number
of nodes allocated for the job is 16 x 32 (512) and 15 (16 —1)
spare nodes are used in the 1D+ sliding method cases. In
the one node failure cases, no significant difference can be
seen among the 0D, 1D and 1D+ methods. In the two node
failure cases, the 0D method performs worse than the others.

Comparing the K computer cases and the BG/Q cases,
BG/Q is more sensitive to the message size and less sensi-
tive to the sliding method, than the cases of the K computer.
The communication performance degradations of the K com-
puter look less than those of BG/Q, however, this seems to
come from the performance of simultaneous message send-
ing of the K computer. In the cases with the 0D sliding
method, the latency ratios of the K computer multiplied by
1.6 or 1.7 are close to the values of BG/Q.

Remarkably, the 2D sliding method performs very well on
both the K computer and BG/Q. Comparing the graphs of
1D+ sliding method and the graphs denoted as “1D+ only”
on both the K computer and BG/Q, the differences between
them are small.

Figure 14 shows the observed communication performance
degradation with one node failure while varying the total
number of nodes measured on the K computer. Here, the
message size is set to 4MiB, a 5P-stencil communication
pattern with the 0D sliding method is used. The goal is
to verify that the communication overhead is independent

from the number of nodes.
The collisions resulting from node substitution(s) in the

IN

.
.
n

—y

Communication Time Ratio
N

—
(=]

100 1,000 10,000
Nodes

Figure 14: Worst-case 5P-stencil communication
time with the 0D sliding method on the K computer

5P-stencil communication pattern are described in Subsec-
tion 2.2. How the message collisions happen with the node
substitution(s) in the 5P-stencil communication is described.
Theoretically, those collision patterns are independent from
the number of nodes (when the number of nodes are large
enough). In a stencil computation, all communications hap-
pen simultaneously. When a message collides with another
message, then the message is stopped due to the collision.
When the collision is over and the stopped message starts
moving again, the other messages which did not collide with
any other messages are already received by the correspond-
ing receiver nodes and thus there is no messages left to col-
lide with in the network. Therefor any message are blocked
by collisions at most once in a stencil communication. This
is the reason why the communication performance degrada-
tion of a stencil communication pattern is independent from
the number of nodes.

3.2 Collective Communication

Up to now, the peer-to-peer (P2P) communication per-
formance in 5P-stencil communication pattern has been the
primary focus. In this subsection, we will extend to the case
of collective communication performance. The communica-
tion patterns of collective communications are more varied
that the stencil pattern, thereby providing a wider insight
about less regular P2P communication patterns as well.

On the K computer, the Tofu network supports hardware
barrier. The other various collective communications are
tuned so that the best performance can be obtained based
on the Tofu network characteristics[18]. The tuning of col-
lective protocols is also very important for the Cray’s Gem-
ini network[13]. However, it is very difficult to predetermine
optimized collective protocols for any possible set of node
failures.

In order to tune collective protocol for the Tofu netwotk,
each MPI collective communication has some conditions for
the physical shape of the communicator. Some of the con-
ditions come from the special protocol tuned for the Tofu
network, and the others come from implementation issues.
When a substitution is made for a failed node, one or more
of these conditions cannot be met and generic algorithms
are used. Thus, the performance of the collective commu-
nication can degrade much more than that of the stencil
communication, because the special tuned protocols cannot
be applied in addition to the collision issue.

Figure 15 shows the barrier and allreduce performances
(message size was 64KiB) on the K computer, with one and

two failed nodes, replaced using the 0D, 1D, 1D+, and 2D
sliding methods. The number of nodes and the evaluation
condition for the 1D+ sliding are the same as in the previous
subsection of 5P-stencil evaluation.

Barrier (K) Allreduce (K)
~3 3~ =3 3~
[¢] [+¢] @ i)
q] q N
x x x x
[se] @ @ @
3\ I N 3V N
Sol 1 _ T T b5 §o = = - = b S
°]; lll o °
(0] (0] Q [o}
12} [Z] [Z] (2]
[© © ©
S a *1 e & -1
<! - e 1 = — 1<
J) D ko
o . . o o . . o
= 1 Failure 2 Failure | ¢ 3 1 Failure 2 Failure |
o o o o
oo Q aaQ + Ao o o oQo +Q
o - «q [SEES = | S - o [SEESl = Y]

Figure 15: Barrier and Allreduce - K (24x24 nodes)

In the worst case of the barrier evaluation graphs in Figure
15, 2.68 times slower than the cases of no failures with the
1D sliding method. The average values (middle bars) are
in the range of 1.26-1.29. One can note that the variance
in the allreduce cases is much smaller than the cases of the
barrier evaluations and the performance degradations of the
2D sliding method are insignificant.

Barrier (BG/Q) Allreduce (BG/Q)

o)
-
N
W

5 835 B
& } I 108 & &
i e ® e
5, fer|llll) ¢ %, 1L s
o o T oz [HH 5
[[} [} (]
@ 6 2 & @
o o] fe] Qo
= 4| e [TTIE AN £
b= = © =
jo) [[} [
o > 0. o o
o) T B ko]
To oo +0 [alagJa] 0 & To [alakda] [alakda) T
900 '823% ' 995 ‘5948 909 '893%' 999 '892%

Figure 16: Barrier and Allreduce - BG/Q (16x32
nodes)

Figure 16 shows the barrier and allreduce performance on
JUQUEEN. We found that the collective performance on
the node set having a spare node set is slower than the cases
without having any spare node. 8.2 times slower with the
barrier operation and 1.8 times slower with the allreduce op-
eration on BG/Q. Such slowdown cannot be seen on the K
computer. There are two sets of graphs, one is based on the
collective performance with the node set excluding the spare
nodes (left graph pairs) and the other is based on the perfor-
mance with the node set having no spare nodes (right graph
pairs) to be fair. To make sure, we evaluated the barrier
performance without the snake-like pattern mapping. When
the spare nodes were allocated on one specific physical di-
mension out of the 5 dimensions of the BG/Q network, such
barrier performance degradation could not be seen. How-
ever, when one node was excluded from MPI_COMM_WORLD,
then the barrier performance was slowed down to one tenth.
Thus, the best way is to allocate spare nodes according to
the network topology and then apply the snake-like pattern
to the node space without spare nodes. However, in this
way, the behavior of the message collisions discussed so far
can be quite different.

Comparing the graphs of the K computer and the graphs
of BG/Q, BG/Q is more sensitive to the number of faults.

Especially, there cannot be seen almost any slowdown in
the allreduce cases with the 2D sliding method on the K
computer, while no significant differences over the various
sliding methods can be seen on BG/Q.

4. RELATED WORK

Ferreira et al. indicated that dual hardware redundancy
while utilizing only 50% of the hardware resource, might be
under some assumptions more efficient than the traditional
checkpoint and restart method in Exascale systems This re-
dundancies can be thought of as spare nodes. The differ-
ence is that the redundant nodes are hotter-standby than
the hot-standby nodes waiting for the intermediate compu-
tational results. The spare nodes can be substituted for the
failed nodes, and they can almost immediately take over the
computations.

Domke et al. showed the difference in communication per-
formance between the presence or absence of network failure
(link or switch) over different network topologies and rout-
ing algorithms[8]. They analyzed the communication per-
formance degradation when network links or switches failed;
this was done by simulation using TSUBAME 2.0. In the K
computer, the Tofu direct network has redundant routes to
bypass failed nodes. However, a job is aborted and resub-
mitted by the operating system if it uses a failed part. In
this work we focus on node failures rather than network fail-
ures. There is a long way to go until we reach the goal where
any kind of failures, node and/or network, can be mitigated.

5. DISCUSSION

5.1 Node Utilization in a Multijob Environ-
ment

Most supercomputers use a batch scheduling system, in
which many jobs run simultaneously. The spare node per-
centages shown in Figure 3 are for individuals jobs, not sys-
tems. If a machine has one million nodes and 100 jobs are
running (for simplicity, assume that these jobs each require
10,000 nodes), then the overhead cost of spare nodes can
exceed 10%.

The possibility that a job has a failed node is proportional
to the number of nodes assigned to the job and execution
time. Thus, the number of spare nodes must also be propor-
tional to the number of nodes assigned and execution time.
Therefore, the number of spare nodes allocated by the pro-
posed method may be excessive when only a small number
of nodes are required by a given job. Ideally, the curves
shown in Figure 3 would be a horizontal line at the height
determined by node failure rate, if the execution times are

the same.
Figure 17 shows a countermeasure for this. Large jobs

should have a higher-order spare node allocation method,
and smaller jobs should have a lower-order method; this will
allow the spare node percentage to approximate a horizontal
line. In the example shown in Figure 17, the spare node
percentage is kept in the range from 2% to 5% by using a
combination of the 3D(3,1), 3D(2,1), and 3D(1,1) methods.

5.2 User-level vs. System-level Substitutions
So far in this paper, we have considered methods in which

the spare nodes are allocated by the job. We would like to

develop a framework that uses something like ULFM and

N

&

N

% Spare Nodes

3D(1,1) 3D(2,1) |3D(3,1)

1&000 100,000
Nodes

1,000,000

Figure 17: Combinations of spare node allocation
methods

that framework replaces faulty nodes with spare nodes, so
that users do not need to be concerned with how failures are
handled. When spare nodes are allocated and substitutions
are determined by user programs, this is called as user-level
substitution; when this is done at a lower system software
level, it is called system-level substitution.

With user-level substitution, the user program is also in-
voked at each spare node, and it waits in hot-standby mode
for the data to migrate from the failed node. This means
that calling MPI_Comm_spawn is not required. On the other
hand, system-level substitution can reduce the percentage
of spare nodes, because spare nodes can be shared by sev-
eral jobs. For example, spare nodes can be allocated at the
boundaries of jobs, and these can be used to replace failed
nodes on both sides of the boundary. However, it is not
possible to have spare nodes on hot standby, as with user-
level substitution. If the spare nodes are not adjacent to
the job in which they are needed, this can result in uncon-
trollable message collisions with other jobs, and unexpected
communication performance degradation.

5.3 Job Resubmission vs. Fault Mitigation

One may argue that a job can be aborted and then resub-
mitted using a checkpoint, instead of mitigating the fault. In
this way, the problem of utilizing spare nodes and the degra-
dation of communication performance, described above, can
be avoided. Job resubmission, however, may incur a long
turnaround time, especially when the system is heavily loaded,
and user-level fault mitigation techniques, such as those de-
scribed in [6], cannot be utilized. When considering which is
better, there are many aspects to be considered. In this pa-
per, we considered only the effect on communication perfor-
mance. It is still an open question if it is better to resubmit
a job or mitigate the fault.

6. SUMMARY AND FUTURE WORK

In this paper, we considered methods for allocating spare
nodes and replacing failed nodes in jobs whose rank-node
mapping is critical to performance. We compared these
methods in terms of communication performance following
substitutions. The substitution methods are 0D, 1D, 1D+,
2D, and higher sliding. In 5P-stencil communication, the
higher the order of the sliding method, the fewer message
collisions but more failure distributions are unrecoverable
for lack of spares. Thus, a combination of these methods
would seem to be the best strategy. We also extended the

evaluation to widely used collective operations.

When replacing a failed node with a spare node, the spare
node must be integrated into the computations. In 1D, 1D+
or 2D sliding, the computations on these nodes are migrated.
We are planning to develop a framework to hide the com-
plexity of allocating and utilizing spare nodes. The technical
issues and actual overhead cost of doing so will be reported
when the development is completed.

Acknowledgment

We thank Dr. Norbert Attig at Jiilich Supercomputing Cen-
ter for allowing us access to the JUQUEEN platform. We
also thank Dr. Franck Cappello, at Argonne National Lab-
oratory, for his useful comments. This research is partially
supported by the CREST project of the Japan Science and
Technology Agency (JST).

7.
[1]

REFERENCES

P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. The
Influence of Operating Systems on the Performance of
Collective Operations at Extreme Scale. In Cluster
Computing, 2006 IEEE International Conference on,
pages 1-12, Sept 2006.

W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and
J. Dongarra. Post-failure recovery of MPI
communication capability: Design and rationale.
International Journal of High Performance Computing
Applications, 27(3):244-254, 2013.

F. Cappello, A. Geist, W. D. Gropp, S. Kale,

B. Kramer, and M. Snir. Toward Exascale Resilience:
2014 Update. Supercomputing Frontiers and
Innovations, 1:1-28, 2014.

Y. Chen, J. S. Plank, and K. Li. CLIP: A
checkpointing tool for message-passing parallel
programs. In Proceedings of the 1997 ACM/IEEE
Conference on SuperComputing (SC’97), pages 1-11,
Nov 1997.

Z. Chen and J. Dongarra. Algorithm-based fault
tolerance for fail-stop failures. IEEE Trans. Parallel
Distrib. Syst., 19(12):1628-1641, Dec. 2008.

T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen.
High Performance Linpack Benchmark: A Fault
Tolerant Implementation Without Checkpointing. In
Proceedings of the International Conference on
Supercomputing, ICS '11, pages 162—-171, New York,
NY, USA, 2011. ACM.

C. Di Martino, Z. Kalbarczyk, R. Iyer, F. Baccanico,
J. Fullop, and W. Kramer. Lessons learned from the
analysis of system failures at petascale: The case of
blue waters. In Dependable Systems and Networks
(DSN), 2014 44th Annual IEEE/IFIP International
Conference on, pages 610621, June 2014.

J. Domke, T. Hoefler, and S. Matsuoka. Fail-in-place
Network Design: Interaction Between Topology,
Routing Algorithm and Failures. In Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 14,
pages 597-608, Piscataway, NJ, USA, 2014. IEEE
Press.

H. Fujita, N. Dun, A. Fang, Z. A. Rubenstein,

Z. Zheng, K. Iskra, J. Hammond, A. Dubey, P. Balaji,

(10]

(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

and A. A. Chien. Using Global View Resilience (GVR)
to add Resilience to Exascale Applications. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC’14, 2014.

IBM. IBM System Blue Gene Solution: Blue Gene/Q
Application Development, Second Edition edition,
2013.

IBM. IBM System Blue Gene Solution: Blue Gene/Q
System Administration, Second Edition edition, 2013.
Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard Version 3.0, 2012.
A. J. Pena, R. G. C. Carvalho, J. Dinan, P. Balaji,

R. Thakur, and W. Gropp. Analysis of
Topology-dependent MPI Performance on Gemini
Networks. In Proceedings of the 20th European MPI
Users’ Group Meeting, EuroMPI 13, pages 61-66,
New York, NY, USA, 2013. ACM.

K. Sato, N. Maruyama, K. Mohror, A. Moody,

T. Gamblin, B. R. de Supinski, and S. Matsuoka.
Design and Modeling of a Non-blocking Checkpointing
System. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage
and Analysis, SC ’12, pages 19:1-19:10, Los Alamitos,
CA, USA, 2012. IEEE Computer Society Press.

N. Shida, S. Sumimoto, and A. Uno. MPI library and
low-level communication on the K computer.
FUJITSU Scientific €& Technical Journal,
48(3):324-330, July 2012.

M. Stephan. JUQUEEN: Blue Gene/Q - System
Architecture, 2012.
http://www.training.prace-ri.eu/uploads/tx_
pracetmo/JUQUEENSystemArchitecture.pdf.

E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer.
TOP500 SUpermputer Site. http://www.top500.org/.
S. Sumimoto. The MPI Communication Library for K
computer: Its Design and Implementation. Invited
talk at EuroMPI 2012 in Vienna.

A. Takefusa, T. Tkegami, H. Nakada, R. Takano,

T. Tozawa, and Y. Tanaka. Scalable and Highly
Available Fault Resilient Programming Middleware for
Exascale Computing. In Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC’14,
2014.

K. Teranishi and M. A. Heroux. Toward local failure
local recovery resilience model using mpi-ulfm. In
Proceedings of the 21st European MPI Users’ Group
Meeting, EuroMPI/ASIA ’14, pages 51:51-51:56, New
York, NY, USA, 2014. ACM.

W. Zhang, L. Hou, J. Wang, S. Geng, and W. Wu.
Comparison Research Between XY and Odd-Even
Routing Algorithm of a 2-Dimension 3X3 Mesh
Topology Network-on-Chip. In Proceedings of the 2009
WRI Global Congress on Intelligent Systems - Volume
03, GCIS ’09, pages 329-333, Washington, DC, USA,
2009. IEEE Computer Society.

Z. Zheng, A. Chien, and K. Teranishi. Fault Tolerance
in an Inner-outer Solver: A GVR-enabled Case Study,
2014. http://www.vecpar.org/papers/vecpar2014_
submission_4.pdf.

